CCD的雛形是在N型或 P型硅襯底上生長一層二氧化硅薄層,再在二氧化硅層上淀積并光刻腐蝕出金屬電極,這些規則排列的金屬-氧化物-半導體電容器陣列和適當的輸入、輸出電路就構成基本的 CCD移位寄存器。
對金屬柵電極施加時鐘脈沖,在對應柵電極下的半導體內就形成可儲存少數載流子的勢阱。可用光注入或電注入的方法將信號電荷輸入勢阱。然后周期性地改變時鐘脈沖的相位和幅度,勢阱深度則隨時間相應地變化,從而使注入的信號電荷在半導體內作定向傳輸。CCD 輸出是通過反相偏置PN結收集電荷,然后放大復位,以離散信號輸出。
電荷轉移效率是 CCD最重要的性能參數之一,用每次轉移時被轉移的電荷量和總電荷量的百分比表示。轉移效率限制了CCD的最大轉移級數。
體溝道CCD的電荷轉移機理和表面溝道CCD略有不同。體溝道CCD又稱為埋溝CCD。所謂體溝道即用來存儲和轉移信號電荷的溝道是在離開半導體表面有一定距離的體內形成。體溝道 CCD的時鐘頻率可高達幾百兆赫,而通常的表面溝道CCD只幾兆赫。
固體成像、信號處理和大容量存儲器是 CCD的三大主要用途。各種線陣、面陣像感器已成功地用于天文、遙感、傳真、卡片閱讀、光測試和電視攝像等領域,微光CCD和紅外CCD在航遙空感、熱成像等軍事應用中顯示出很大的作用。CCD 信號處理兼有數字和模擬兩種信號處理技術的長處,在中等精度的雷達和通信系統中得到廣泛應用。


